mindsquare.de durchsuchen

Deep Learning

Deep Learning bedeutet auf Deutsch „tiefgehendes Lernen“ und bezeichnet einen Teilbereich des maschinellen Lernens (Machine Learning). Die Lernmethode basiert auf großen Datenmengen, die durch künstliche, neuronale Netze verarbeitet werden und so der Informationsgewinnung dienen. Deep Learning ist z. B. der Schlüssel zur Sprachsteuerung von Verbrauchergeräten wie Smartphones, Tablets oder Freisprecheinrichtungen.

Das Konzept

Grundsätzlich gilt: Deep Learning lehrt Maschinen das Lernen. Die Lernmethode richtet sich nach der Funktionsweise des menschlichen Gehirns: Zur Herstellung Künstlicher Intelligenz (KI) werden verschiedene Trainingsmethoden genutzt, die in großem Umfang Daten analysieren und Entscheidungen treffen. Das Erlernte wird immer wieder mit neuen Inhalten verknüpft und dadurch erneut erlernt. Dabei eignen sich besonders gut sehr große Datenbestände, aus denen sich Muster und Modelle ableiten lassen. Die Maschine ist in der Lage, selbstständig und ohne menschlichem Einfluss ihre Fähigkeiten zu verbessern. Aus vorhandenen Informationen und Daten werden Muster extrahiert und klassifiziert. Die gewonnen Erkenntnisse lassen sich in neuen Zusammenhängen verknüpfen. Folglich ist die Maschine in der Lage auf Basis dieser Verknüpfungen Entscheidungen zu treffen – und auch zu hinterfragen. Durch das Hinterfragen der Entscheidungen erhalten die Informationsverknüpfungen bestimmte Gewichtungen. Bestätigen sich Entscheidungen, so erhöht sich die Gewichtung und auch andersherum: Werden Entscheidungen revidiert, verringert sich die Gewichtung.

Sie haben bereits einen Anwendungsfall in Ihrem Unternehmen identifiziert, in dem Sie mithilfe Künstlicher Intelligenz (KI) bzw. Machine Learning neue Potenziale ausschöpfen können? Aufgrund unzureichender Erfahrung mit der neuen Technologie fehlt häufig das Knowhow, um hier eine fundierte Entscheidung treffen zu können. Wir haben die passende Lösung: Validieren Sie Ihr erstes Anwendungsszenario für KI durch die Realisierung eines einfachen Prototypen, der die Anwendbarkeit in Ihrem konkreten Fall aufzeigt.

E-Book: KI im Mittelstand

In diesem E-Book erfahren Sie, wie Sie KI in Ihrem Unternehmen einsetzen können.

Grundlage für das Deep Learning: Neuronale Netze

Die Funktionsweise ist an das menschliche Gehirn angelehnt. Das neuronale Netz ist – abstrakt betrachtet – ein Modell aus künstlichen Neuronen. Es verfügt über Ein- und Ausgangsneuronen sowie Zwischenneuronen. Die Eingangsneuronen lassen sich auf verschiedene Art und Weise über die Zwischenneuronen mit den Ausgangsneuronen verknüpfen. Je mehr Neuronen bestehen, desto komplexere Sachverhalte können sich abbilden lassen.

Unterschied zwischen Deep Learning und Machine Learning

Deep Learning ist ein Teilbereich des maschinellen Lernens. Es ist jedoch eine spezialisierte Form und unterscheidet sich folglich in der Funktionsweise. Der größte Unterscheid besteht darin, dass beim maschinellen Lernen der Mensch eine größere Rolle spielt: Er greift in die Analysen der Daten und den Entscheidungsprozess ein. Beim Deep Learning sorgt der Mensch für die Bereitstellung der Informationen und dokumentiert die Prozesse – eigentliche Entscheidungsfindung sowie das Ableiten von Prognosen liegen bei der Maschine. Im Nachhinein lässt sich nicht mehr zurückverfolgen, auf Basis welcher Daten welche Entscheidungen getroffen wurden – die Entscheidungsregeln optimiert die Maschine automatisiert und eigenständig.

In unserem Design Thinking Seminar geben wir Ihnen einen tiefgehenden Einblick in das Thema Design Thinking und vermitteln Ihnen neue Wege und Strategien, wie Sie Probleme auf innovative und kreative Art und Weise lösen können.

Geschichtliche Entwicklung

Bereits in den 1950er Jahren haben Entwickler und Forscher per Hand Regeln in Computer getippt, um Gegenstände anhand ihrer Merkmale zu unterscheiden. Diese Vorgehensweise gestaltete sich sehr schwierig und zeitaufwendig. In den 1980er Jahren bestand der bessere Weg darin, das Lernen den künstlichen, neuronalen Netzen zu überlassen. Im Wesentlichen sah der Ansatz vor, künstliche Neuronen in mehrere Ebenen einzuteilen. Diese Deep-Learning-Programme schnitten jedoch kaum besser ab als einfacher gestrickte Varianten. Zu Beginn des neuen Jahrtausends war die Zeit für Innovationen gekommen. Das dramatische Anwachsen digitaler Datenbestände sollte dem Deep Learning neue Möglichkeiten geben. Beispielsweise Spracherkennungen wurden mithilfe verschiedenster Software trainiert und konstant verbessert. Das ist jedoch nicht das einzige Beispiel – es gibt zahlreiche verschiedene Anwendungsszenarien für Deep Learning.

Anwendungsbeispiele

Deep Learning eignet sich besonders gut dort, wo große Datenmengen und Informationen anfallen. Dies ist beispielsweise bei Gesichts-, Sprach- und Objekterkennung der Fall:

  • Spracherkennung: Bei der Spracherkennung wie Amazons Alexa oder Siri von Apple ist es mithilfe von Deep Learning möglich, dass das System den Wortschatz selbstständig um neue Wörter oder Redewendungen erweitert.
  • Automobilbranche: Deep Learning ist eine wichtige Technologie in fahrerlosen Autos. Die Lernmethode ermöglicht es, Stoppschilder zu erkennen oder einen Fußgänger von einer Straßenlaterne zu unterscheiden.
  • Risikominimierung bei Finanztransaktionen: Beim Monitoring von Banktransaktionen und Wertpapierhandeln kann Deep Learning unterstützen. Mit anonymisierten Trainingsdaten können Algorithmen so trainiert werden, dass sie ungewöhnliche Tätigkeiten gezielt erkennen.
  • Medizinische Forschung: Krebsforscher verwenden Deep Learning, um Krebszellen automatisch zu erkennen. Mithilfe eines innovativen Mikroskops und viel Training können Krebszellen präzise identifiziert werden.
  • Verbesserung von Sicherheitsarchitekturen: Es kann dabei helfen, Sicherheitslücken in Systemen zu schließen. Aufgrund der besonders guten Lernfähigkeit kann Deep Learning normale Tätigkeiten von Angriffen und anderen Unregelmäßigkeiten unterscheiden.
Wie Ihr Unternehmen von Künstlicher Intelligenz (KI) profitieren kann

In unserem E-Book erfahren Sie die wichtigsten Inhalte rund um das Thema künstliche Intelligenz & wie Sie davon profitieren können!

Fazit

Auch wenn es bereits viele Anwendungsbeispiele und Erfolge mit Deep Learning gibt, steckt die Lernmethode noch in den Kinderschuhen und hat viel Potenzial. Haben Sie Fragen rund um die Möglichkeiten mit Deep Learning oder maschinellem Lernen? Wir sind Experten auf dem Gebiet und helfen Ihnen gerne weiter – kontaktieren Sie uns einfach.

Künstliche Intelligenz (KI) ist in der heutigen Zeit ein sehr präsentes Thema – besonders für Unternehmen. Mithilfe von KI können Geschäftsprozesse optimiert und effizienter gestaltet werden. Weitere Informationen zum Thema KI und über unseren Potenzialworkshop finden Sie hier.

Wie geht es weiter?

Schritt 1

Sie nehmen telefonisch, per Mail oder Formular Kontakt auf und schildern uns Ihr Anliegen.

Schritt 2

Zur Klärung von Rückfragen und von Details zum weiteren Vorgehen melden wir uns telefonisch bei Ihnen.

Schritt 3

Wir unterbreiten Ihnen ein Angebot und unterstützen Sie gerne auch bei der Präsentation für Ihr Management.

Passende Angebote zum Thema

SAP Security Check
Sie möchten einen Überblick über die Sicherheitssituation Ihres SAP Systems erhalten, Risiken identifizieren und den sicheren Betrieb Ihrer Landschaft gewährleisten? Steht eine Revision bevor und Sie wollen sicher sein, dass alle Auflagen erfüllt werden?
SAP Analytics Managers Update Service
SAP Analytics – Änderungen im Reporting-Umfeld sind verwirrend und sowohl Manager als auch Entwickler behalten kaum den Überblick. Mit dem „Managers Update“ bieten wir einen Service, der Sie über die neusten Entwicklungen informiert.
Komplettpaket: HR-Analytics
Sie stehen vor der Herausforderung ein Reporting im HR-Umfeld aufzubauen, Ihnen fehlen jedoch die notwendigen Kompetenzen im Umfeld von SAP BW füe die Umsetzung? Dann wenden Sie sich an uns!